
 1

From Sequence Diagrams to Behaviour Models
Sebastian Uchitel, Jeff Magee and Jeff Kramer
Department of Computing, Imperial College

180 Queen’s Gate, London SW7 2BZ, UK

1 INTRODUCTION

Sequence Diagrams
The software engineering community has long understood the importance of requirements
elicitation. Stakeholder involvement in the elicitation process and tools to help build a
common ground between stakeholders and developers is essential in order to obtain a good
requirements definition. Scenarios have become increasingly popular as a means of
articulating stakeholder requirements. Scenarios describe how system components (in the
broadest sense) and users interact in order to provide system level functionality. Each scenario
is a partial story which, when combined with all other scenarios, should conform to provide a
complete system description. Thus stakeholders may develop descriptions independently,
contributing their own view of the system to those of other stakeholders.

The Unified Modelling Language has a notation for scenarios called Sequence Diagrams [1].
These diagrams, together with their counterpart from the telecommunication industry Message
Sequence Charts [2], have become widely accepted notations for scenario-based specification.
Although sequence diagrams facilitate the requirement elicitation process, they have not been
exploited to their full extent for requirement analysis and for transitioning into the design
phase. This is due fundamentally to the lack of tool support and the lack of agreement on the
exact meaning of this graphical notation.

Behaviour Models
Modern software systems tend to be of a highly complex and concurrent nature, and often have
strict correctness requirements. Pre-deployment and pre-development reasoning about system
behaviour is crucial in application areas such as industry, avionics, health care, and defence
where the cost of failure is extremely high. However, the wide acceptance of Java with its in-
built concurrency constructs means that concurrent programming is no longer restricted to the
minority of programmers involved in operating systems and embedded real-time applications
[3]. Thus, there is further need to provide accessible technology for understanding the subtle
properties of the concurrent system behaviour.

The main principle behind analysis of concurrent system behaviour is the construction of
models. These models are simplified representations that focus on the interactions between
components working concurrently. They are usually called behaviour models as they describe
how components behave with respect to other components. If rigorous analysis is to be
performed, behaviour models must be formally defined. In other words, they must be based on
mathematical modelling techniques and have well-understood properties. A behaviour model
can be used as a precise specification of intended behaviour, as a prototype for exploring the
system behaviour and also to allow for automated checking of model compliance to properties
(model checking). Numerous tools that allow model checking and animation of behaviour
models exist (e.g. [3-6]).

Sequence Diagrams to Behaviour Models
Scenarios view systems as collections of independent, concurrent components and show how
they interact in order to provide system level functionality. This view coincides with that of
behaviour models for concurrent systems. Nevertheless, although it is clear that there is an
overlap between scenario specifications and behaviour models, the precise relation between
these two is usually unclear. Our general goal is to try to clarify the relationship.

There seems to be an interesting balance between the two in terms of potentials and
shortcomings. Scenario specifications are still maturing with respect to the definition of

 2

rigorous semantics and analysis tools, however they already have wide acceptance in industry.
Behaviour models have not yet had a major impact on practitioners, nevertheless boast an
important mathematical foundation and efficient tools for behaviour analysis. We believe that
understanding the relation between scenarios and behaviour models can help define techniques
and tools that leverage both areas.

2 RELATED WORK
There has been much work on scenarios. Publications deal with subjects that range from
formal semantics to informal development methodologies. In general, they all agree on what is
a scenarios (in its most simplest sense) and how it should be interpreted. However, from then
on there are more differences than similarities. Scenarios specification languages have been
enriched by a variety of constructs that include specification of alternatives, loops, timers,
message loss, component creation and destruction, compositional constructs and data [7, 8].
Besides, as scenarios are enriched with more complex features, their semantics becomes
unclear. Even in the presence of very basic features, important differences in interpretation
occur. This is especially true when considering a set of scenarios and how they relate.

In the approach adopted by the International Telecommunication Union (ITU) [2] and others
[9-11], focus is on providing scenario-based specifications with a means for managing
complexity. Basic Message Sequence Charts (bMSCs) are used to specify simple sequences of
behaviour whilst High-level Message Sequence Charts (hMSCs) are used to indicate their
possible orderings. hMSCs allow stakeholders to reuse scenarios within a specification and to
introduce sequences, loops, and disjunctions of bMSCs [2]. The advantage of the hMSC
approach is that it allows stakeholders to break up a scenario specification into manageable
parts in a simple, intuitive, and operational way, and to show how these different parts relate.
A diffent approach is presented in [12-14], where focus is on identifying, throughout the set of
scenarios, those states that are considered to refer to the same component state. For example,
Whittle and Schumann [12] use the Object Constraint Language (OCL) to express pre- and
post-conditions for messages. These are traversed with bMSCs to produce a valuation of
global state variables in bMSC states. These valuations are used to identify equivalent states.
Another example is the statechart synthesis algorithm in SCED [14]. This approach employs
the domain-specific assumption that the capability of outputting a specific message uniquely
identifies the state of a component.

In terms of semantics of scenario-based specifications, there are several approaches: In some
approaches scenario notations are used with no well-defined semantics as for example in some
UML-based development methodologies such as [1, 15, 16]. These approaches allow
documentation and communication of requirements but are hard to use for rigorous analysis as
their meaning is unclear. In other cases, algorithms are provided for translating scenarios into
other notations [12, 14, 17]. These approaches provide more insight to the meaning of
scenarios if the target notation has a well-defined semantics. However, this procedure, called
synthesis, is rather operational and can (and usually does) hide in the synthesis algorithm many
subtle aspects of the scenario semantics. We believe that a better approach is to define a
declarative semantics for the scenario specification language and to construct a sound
synthesis algorithm with respect to the semantics. Among the approaches using synthesis,
there are several approaches that generate statechart models [12-14, 17]. Authors argue that
statecharts provide a more structured, and therefore more understandable, view of component
behaviour. However the drawback is that statechart semantics (based on micro and macro-
steps) is rather complex and availability of automated analysis tools that support the formalism
is limited. An interesting aspect of synthesis is that it offers the possibility of using additional
information in the form of alternative specifications [12, 13] or domain-specific assumptions
[14] to produce behaviour models that integrate different information sources. Finally, several
formal semantics for scenario languages have been proposed. In [11] the semantics complies
with a delayed choice policy. Meaning that a component, when choosing between two
different possible scenarios, will postpone the decision if both scenarios have common initial
events. Although delayed choice is a reasonable assumption in many cases, there are some

 3

situations where non-determinism is desirable. The formal semantic definition is given in
terms of process algebra using non-standard operators to model delayed choice. Other
formalisations exist, both using delayed choice (e.g. [18, 19]) and not (e.g. [20]).

In terms of automated analysis of scenario-based specifications there has not been so much
work. Some approaches focus on detecting some consistency criteria (e.g. [9]) which is done
syntactically. Other approaches such as in [21] focus on checking specific properties such as
process divergence and non-local choice. However, in these approaches, there is no
construction of a model that can then be checked for consistency or analysed with respect to
ad-hoc system properties which might be proposed by designers or stakeholders.

3 WORK IN PROGRESS
One of our objectives is to facilitate the development of behaviour models in conjunction with
scenarios. Being scenarios complementary to such models, in addition to providing an
alternative view, we believe that there is benefit to be gained by experimenting with and
replaying analysis results from behaviour models in order to help correct, elaborate and refine
scenario-based specifications.

Our initial focus has been on existing approaches to scenario specifications and on
understanding the rationale behind the many assumptions and uses they have. It became clear
that our approach should try to integrate existing ones by providing a core language on which
other languages could be built on. In [22] our aim has been to provide a workbench for
supporting various approaches to scenario-based specifications, behaviour synthesis and
analysis. We have defined a formal semantics for a scenario language that integrates
approaches based on high-level message sequence charts and on identifying component states.
However, instead of assuming specific criteria for identifying component states, we provide a
simple mechanism for making this information explicit within a sequence diagram using state
labels [2]. In this way we aim to provide a workbench for approaches such as [12-14] that
allows for explicit additional information (usually in some other formalism such as OCL)
and/or domain-specific or other assumptions within an scenario-based specification.
Furthermore, we show how many of these assumptions can be automatically translated into
state labels. The semantics is given in terms of Labelled Transition Systems (LTS) and parallel
composition [23], which are fully understood and widely accepted mathematical constructs for
modelling concurrent systems. In addition, we have developed an algorithm for the automatic
synthesis of system behaviour models. We have integrated our synthesis process to an existing
model checking tool to support system requirements validation. This is done by first
translating the specification into a Finite Sequential Processes (FSP) specification [3], which
can then be analysed using the Labelled Transition System Analyser [3] by model checking for
deadlock, safety and liveness properties and by model animation [24]. In [25] we have shown
the soundness of our synthesis algorithm with respect to the language semantics.

4 FUTURE WORK
Scenarios have proved to be a good tool for bridging the gap between stakeholders and
developers. However, up to now, this is mainly a one-way bridge in which developers gain
more insight of stakeholders’ domain knowledge. Future work will be focused on building a
bridge in the other direction, i.e. building mechanisms to provide feedback of the developer’s
world to stakeholders. Preliminary work in this direction is promising. We are automating the
construction of alternative system views from synthesised LTS models. Interestingly, taking
advantage of the semantic overlap between high-level sequence diagrams and state labels, one
can generate many different views. State labels identify component states across scenarios,
while high-level sequence diagrams provide information about all components by relating
scenarios. Moving information from one representation to the other allows for a large number
of possible views that vary from long scenarios that start at the system’s initial state to short
scenarios that optimise reuse. These views can allow stakeholders to gain more insight into
their own scenario specifications or be used by designers to show the impact of their changes
to behavioural models in a language that stakeholders manage.

 4

The use of state labels and high-level sequence diagrams to add information on the branching
structure of components suggests that it may be useful to develop some methodological
guidelines for incrementally building a complete behaviour model from an initially scarce set
of simple scenarios. We are looking into this aspect and hope to develop some tools and
techniques to facilitate this process.

Finally there is an important extension that we shall be looking at which is the inclusion of
time into scenarios. This may allow us to develop a whole new set of tools and techniques for
real-time systems.

5 CONCLUSION
We believe that scenario-based specifications and behaviour models can complement each
other, providing alternative views of concurrent systems, models for experimentation and
analysis in order to help correct, elaborate and communicate system requirements. To enable
this, it is important to understand the relationship between scenarios and behaviour models and
to define techniques and tools that can leverage the advantages of both areas.

We have defined a formal semantics for a sequence diagram-based language that serves as a
workbench for supporting various other approaches to scenario-based specification, behaviour
synthesis and analysis. We have also developed a synthesis algorithm integrated with the
LTSA model-checking tool that permits behaviour model analysis. We are now currently
working on generating feedback from behaviour models in form of scenario-based
specifications.

REFERENCES

1. Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modelling Language User Guide,

ed. Addison-Wesley. 1998.
2. ITU, ITU-T Recommendation Z.120. Message Sequence Charts (MSC'96). 1996, ITU

Telecommunication Standardisation Sector: Geneva.
3. Magee, J. and J. Kramer, Concurrency: State Models and Java Programs. 1999, New

York: John Wiley & Sons Ltd.
4. Kramer, J. and J.C. Cheung. Compositional reachability analysis of finite-state distributed

systems with user specified constraints. SIGSOFT. 1995. Washington D.C.
5. Burch, J.R., et al., Symbolic model checking: 10^20 and beyond. Information and

Computation, 1992(98): p. 142-170.
6. Holzmann, G.J. and D. Peled, The state of Spin. Prentice Hall Software Series, ed.

Prentice-Hall. 1991.
7. Mauw, S. The Formalization of Message Sequence Charts. 1st Workshop of the SDL

Forum Society on SDL and MSC. 1998. Berlin, Germany.
8. Haugen, O., MSC-2000 Interaction for the new Millenium. 2000, SDL Forum MSC2000.
9. Alur, R., G.J. Holzmann, and D. Peled. An Analyser for Message Sequence Charts. Second

International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'96). 1996. Passau, Germany.

10. Rudolph, E., P. Graubmann, and J. Grabowski. Tutorial on Message Sequence Charts '96.
FORTE/PSTV. 1996. Kaiserslautern, Germany.

11. Cobens, J.M.H., et al., Formal Semantics of Message Sequence Charts. 1998,
Eindenhoven University of Technology: Eindhoven, The Netherlands.

12. Whittle, J. and J. Schumann. Generating Statechart Designs from Scenarios. in 22nd
International Conference on Software Engineering (ICSE'00). 2000. Limerick, Ireland:
ACM Press.

13. Somé, S., R. Dssouli, and J. Vaucher. From Scenarios to Timed Automata: Building
Specifications from User Requirements. Asia Pacific Software Engineering Conference.
1995.

14. Systä, T., Static and Dynamic Reverse Engineering Techniques for Java Software Systems,
in Dept. of Computer and Information Sciences. 2000, University of Tampere.

 5

15. Texel, P.P. and C.B. Williams, Use Cases Combined with Booch, OMT, and UML. 1997:
Prentice-Hall.

16. Quatrani, T., Visual modelling with Rational Rose 2000 and UML. 1998, Reading, Mass.:
Addison Wesley.

17. Broy, M., et al. From MSCs to Statecharts. Distributed and Parallel Embedded Systems.
1999: Kluwer Academic Publishers.

18. Heymer, S. A Non-Interleaving Semantics for MSC. 1st Workshop of the SDL Forum
Society on SDL and MSC. 1998. Berlin, Germany.

19. Katoen, J.-P. and L. Lambert. Pomesets for Message Sequence Charts. in 1st Workshop of
the SDL Forum Society on SDL and MSC. 1998. Berlin, Germany.

20. Alur, R., K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts. 22nd
International Conference on Software Engineering (ICSE'00). 2000. Limerick, Ireland.

21. Ben-Abdhallah, H. and S. Leue. Syntactic Detection of Process Divergence and Non-Local
Choice in Message Sequence Charts. Third International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS'97). 1997: Springer-
Verlag.

22. Uchitel, S. and J. Kramer. A Workbench for Synthesising Behaviour Models from
Scenarios. ICSE 2001. 2001. Toronto, Canada.

23. Milner, R., Communication and Concurrency. International Series in Computer Science.
1989: Prentice-Hall.

24. Magee, J., et al. Graphical Animation of Behaviour Models. 22nd International
Conference on Software Engineering (ICSE'00). 2000. Limerick, Ireland.

25. Uchitel, S. and J. Kramer, A Sound Algorithm for Synthesis of Behaviour Models from
Scenarios. 2001, Department of Computing, Imperial College. London, UK.

